Conserved spacing between the box C/D and C'/D' RNPs of the archaeal box C/D sRNP complex is required for efficient 2'-O-methylation of target RNAs.
نویسندگان
چکیده
RNA-guided nucleotide modification complexes direct the post-transcriptional nucleotide modification of both archaeal and eukaryotic RNAs. We have previously demonstrated that efficient 2'-O-methylation activity guided by an in vitro reconstituted archaeal box C/D sRNP requires juxtaposed box C/D and C'/D' RNP complexes. In these experiments, we investigate the importance of spatially positioning the box C/D and C'/D' RNPs within the sRNP complex for nucleotide modification. Initial sequence analysis of 245 archaeal box C/D sRNAs from both Eukyarchaeota and Crenarchaeota kingdoms revealed highly conserved spacing between the box C/D and C'/D' RNA motifs. Distances between boxes C to D' and C' to D (D' and D spacers, respectively) exhibit highly constrained lengths of 12 nucleotides (nt). Methanocaldococcus jannaschii sR8 sRNA, a model box C/D sRNA with D and D' spacers of 12 nt, was mutated to alter the distance between the two RNA motifs. sRNAs with longer or shorter spacer regions could still form sRNPs by associating with box C/D core proteins, L7, Nop56/58, and fibrillarin, comparable to wild-type sR8. However, these reconstituted box C/D sRNP complexes were severely deficient in methylation activity. Alteration of the D and D' spacer lengths disrupted the guided methylation activity of both the box C/D and C'/D' RNP complexes. When only one spacer region was altered, methylation activity of the corresponding RNP was lost. Collectively, these results demonstrate the importance of box C/D and C'/D' RNP positioning for preservation of critical inter-RNP interactions required for efficient box C/D sRNP-guided nucleotide methylation.
منابع مشابه
Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2'-O-methylation.
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guid...
متن کاملA novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation.
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and relat...
متن کاملIn vitro reconstitution and affinity purification of catalytically active archaeal box C/D sRNP complexes.
Archaeal box C/D RNAs guide the site-specific 2'-O-methylation of target nucleotides in ribosomal RNAs and tRNAs. In vitro reconstitution of catalytically active box C/D RNPs by use of in vitro transcribed box C/D RNAs and recombinant core proteins provides model complexes for the study of box C/D RNP assembly, structure, and function. Described here are protocols for assembly of the archaeal b...
متن کاملThe bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity
The archaeal box C/D sRNP, the enzyme responsible for 2'-O-methylation of rRNA and tRNA, possesses a nearly perfect axis of symmetry and bipartite structure. This RNP contains two platforms for the assembly of protein factors, the C/D and C'/D' motifs, acting in conjunction with two guide sequences to direct methylation of a specific 2'-hydroxyl group in a target RNA. While this suggests that a...
متن کاملDissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function
In all three kingdoms of life, nucleotides in ribosomal RNA (rRNA) are post-transcriptionally modified. One type of chemical modification is 2'-O-ribose methylation, which is, in eukaryotes and archaea, performed by box C/D small ribonucleoproteins (box C/D sRNPs in archaea) and box C/D small nucleolar ribonucleoproteins (box C/D snoRNPs in eukaryotes), respectively. Recently, the first structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2005